finished code and testing of functions on AVR 328P.
This commit is contained in:
parent
f70de31502
commit
599f5a32d9
|
@ -0,0 +1,22 @@
|
|||
:100000000C9434000C9446000C9446000C9446006A
|
||||
:100010000C9446000C9446000C9446000C94460048
|
||||
:100020000C9446000C9446000C9446000C94460038
|
||||
:100030000C9446000C9446000C9446000C94460028
|
||||
:100040000C9446000C9446000C9446000C94460018
|
||||
:100050000C9446000C9446000C9446000C94460008
|
||||
:100060000C9446000C94460011241FBECFEFD8E03C
|
||||
:10007000DEBFCDBF21E0A0E0B1E001C01D92A23003
|
||||
:10008000B207E1F70E9491000C949F000C940000CD
|
||||
:10009000389A90E031E09817D1F028B1232728B999
|
||||
:1000A0002FEF4FE756E1215040405040E1F700C0AC
|
||||
:1000B000000028B1232728B92FEF4FE756E1215040
|
||||
:1000C00040405040E1F700C000009F5FE4CF08953A
|
||||
:1000D00087B1897F87B988B1897F88B9089586B14A
|
||||
:1000E000867090E09595879520910101281749F039
|
||||
:1000F0008093010190910001990F990F892B8093B2
|
||||
:100100000001809100018B3431F0873841F4109266
|
||||
:10011000000182E008951092000181E0089580E0DE
|
||||
:1001200008950E94680082E00E9448000E946F00CB
|
||||
:10013000813019F08230B9F3F9CF81E0F5CFF8942E
|
||||
:02014000FFCFEF
|
||||
:00000001FF
|
|
@ -0,0 +1,217 @@
|
|||
|
||||
##########------------------------------------------------------##########
|
||||
########## Project-specific Details ##########
|
||||
########## Check these every time you start a new project ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
#MCU = atmega168p
|
||||
#MCU = atmega2560
|
||||
#MCU = attiny85
|
||||
MCU = atmega328p
|
||||
F_CPU = 14745600UL
|
||||
#F_CPU = 1000000UL
|
||||
BAUD = 9600UL
|
||||
## Also try BAUD = 19200 or 38400 if you're feeling lucky.
|
||||
|
||||
## A directory for common include files and the simple USART library.
|
||||
## If you move either the current folder or the Library folder, you'll
|
||||
## need to change this path to match.
|
||||
#LIBDIR = ../../AVR-Programming-Library
|
||||
#LIBDIR = /usr/lib/gcc/avr/5.4.0/
|
||||
LIBDIR = /lib/avr/
|
||||
SUB_MODULES = ./lib/*/src/
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer Defaults ##########
|
||||
########## Set up once, then forget about it ##########
|
||||
########## (Can override. See bottom of file.) ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
PROGRAMMER_TYPE = usbasp-clone
|
||||
# extra arguments to avrdude: baud rate, chip type, -F flag, etc.
|
||||
PROGRAMMER_ARGS = -b 9600 -B 4 -v
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Program Locations ##########
|
||||
########## Won't need to change if they're in your PATH ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
CC = avr-gcc
|
||||
OBJCOPY = avr-objcopy
|
||||
OBJDUMP = avr-objdump
|
||||
AVRSIZE = avr-size
|
||||
AVRDUDE = avrdude
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Makefile Magic! ##########
|
||||
########## Summary: ##########
|
||||
########## We want a .hex file ##########
|
||||
########## Compile source files into .elf ##########
|
||||
########## Convert .elf file into .hex ##########
|
||||
########## You shouldn't need to edit below. ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## The name of your project (without the .c)
|
||||
# TARGET = blinkLED
|
||||
## Or name it automatically after the enclosing directory
|
||||
TARGET = $(lastword $(subst /, ,$(CURDIR)))
|
||||
|
||||
# Object files: will find all .c/.h files in current directory
|
||||
# and in LIBDIR. If you have any other (sub-)directories with code,
|
||||
# you can add them in to SOURCES below in the wildcard statement.
|
||||
SOURCES=$(wildcard ./src/*.c $(LIBDIR)/*.c $(SUB_MODULES)/*.c)
|
||||
OBJECTS=$(SOURCES:.c=.o)
|
||||
HEADERS=$(SOURCES:.c=.h)
|
||||
|
||||
## Compilation options, type man avr-gcc if you're curious.
|
||||
CPPFLAGS = -DF_CPU=$(F_CPU) -DBAUD=$(BAUD) -I. -I$(LIBDIR)
|
||||
CFLAGS = -Os -g -std=gnu99 -Wall
|
||||
## Use short (8-bit) data types
|
||||
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
## Splits up object files per function
|
||||
CFLAGS += -ffunction-sections -fdata-sections
|
||||
LDFLAGS = -Wl,-Map,$(TARGET).map
|
||||
## Optional, but often ends up with smaller code
|
||||
LDFLAGS += -Wl,--gc-sections
|
||||
## Relax shrinks code even more, but makes disassembly messy
|
||||
## LDFLAGS += -Wl,--relax
|
||||
## LDFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
|
||||
## LDFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
|
||||
TARGET_ARCH = -mmcu=$(MCU)
|
||||
|
||||
## Explicit pattern rules:
|
||||
## To make .o files from .c files
|
||||
%.o: %.c $(HEADERS) Makefile
|
||||
$(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c -o $@ $<;
|
||||
|
||||
$(TARGET).elf: $(OBJECTS)
|
||||
$(CC) $(LDFLAGS) $(TARGET_ARCH) $^ $(LDLIBS) -o $@
|
||||
|
||||
%.hex: %.elf
|
||||
$(OBJCOPY) -j .text -j .data -O ihex $< $@
|
||||
|
||||
%.eeprom: %.elf
|
||||
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
|
||||
|
||||
%.lst: %.elf
|
||||
$(OBJDUMP) -S $< > $@
|
||||
|
||||
## These targets don't have files named after them
|
||||
.PHONY: all disassemble disasm eeprom size clean squeaky_clean flash fuses
|
||||
|
||||
all: $(TARGET).hex
|
||||
|
||||
debug:
|
||||
@echo
|
||||
@echo "Source files:" $(SOURCES)
|
||||
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
|
||||
@echo
|
||||
|
||||
# Optionally create listing file from .elf
|
||||
# This creates approximate assembly-language equivalent of your code.
|
||||
# Useful for debugging time-sensitive bits,
|
||||
# or making sure the compiler does what you want.
|
||||
disassemble: $(TARGET).lst
|
||||
|
||||
disasm: disassemble
|
||||
|
||||
# Optionally show how big the resulting program is
|
||||
size: $(TARGET).elf
|
||||
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
|
||||
|
||||
clean:
|
||||
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
|
||||
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
|
||||
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
|
||||
$(TARGET).eeprom
|
||||
|
||||
squeaky_clean:
|
||||
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~ *.eeprom
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer-specific details ##########
|
||||
########## Flashing code to AVR using avrdude ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
flash: $(TARGET).hex
|
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
|
||||
|
||||
## An alias
|
||||
program: flash
|
||||
|
||||
flash_eeprom: $(TARGET).eeprom
|
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
|
||||
|
||||
avrdude_terminal:
|
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
|
||||
|
||||
## If you've got multiple programmers that you use,
|
||||
## you can define them here so that it's easy to switch.
|
||||
## To invoke, use something like `make flash_arduinoISP`
|
||||
flash_usbtiny: PROGRAMMER_TYPE = usbtiny
|
||||
flash_usbtiny: PROGRAMMER_ARGS = # USBTiny works with no further arguments
|
||||
flash_usbtiny: flash
|
||||
|
||||
flash_usbasp: PROGRAMMER_TYPE = usbasp
|
||||
flash_usbasp: PROGRAMMER_ARGS = # USBasp works with no further arguments
|
||||
flash_usbasp: flash
|
||||
|
||||
flash_arduinoISP: PROGRAMMER_TYPE = avrisp
|
||||
flash_arduinoISP: PROGRAMMER_ARGS = -b 19200 -P /dev/ttyACM0
|
||||
## (for windows) flash_arduinoISP: PROGRAMMER_ARGS = -b 19200 -P com5
|
||||
flash_arduinoISP: flash
|
||||
|
||||
flash_109: PROGRAMMER_TYPE = avr109
|
||||
flash_109: PROGRAMMER_ARGS = -b 9600 -P /dev/ttyUSB0
|
||||
flash_109: flash
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Fuse settings and suitable defaults ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Mega 48, 88, 168, 328 default values
|
||||
#LFUSE=0x62 ##Low Fuse
|
||||
#HFUSE=0xdf ##High fuses
|
||||
#EFUSE=0x00 ##
|
||||
|
||||
## Mega 328p fuses
|
||||
LFUSE = 0x62
|
||||
HFUSE = 0xd9
|
||||
EFUSE = 0xff
|
||||
|
||||
|
||||
## Generic
|
||||
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
|
||||
|
||||
fuses:
|
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
|
||||
$(PROGRAMMER_ARGS) $(FUSE_STRING)
|
||||
show_fuses:
|
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
|
||||
|
||||
## Called with no extra definitions, sets to defaults
|
||||
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
|
||||
set_default_fuses: fuses
|
||||
|
||||
## For external clock low-power crystal.
|
||||
# The low order fuse is set for a low-power crystal. 14.7456Mhz
|
||||
# cksel[3:1] 8.0-16.0 = 111 //Sets it for the range of 8Mhz - 16Mhz
|
||||
# cksel[0] 1 SUT[1:0] 11 //gives 16K ck startup time aprox 65ms
|
||||
set_crystal_fuses: LFUSE = 0xFF
|
||||
set_crystal_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m
|
||||
set_crystal_fuses: fuses
|
||||
|
||||
## Set the fuse byte for full-speed mode
|
||||
## Note: can also be set in firmware for modern chips
|
||||
set_fast_fuse: LFUSE = 0xE2
|
||||
set_fast_fuse: FUSE_STRING = -U lfuse:w:$(LFUSE):m
|
||||
set_fast_fuse: fuses
|
||||
|
||||
## Set the EESAVE fuse byte to preserve EEPROM across flashes
|
||||
set_eeprom_save_fuse: HFUSE = 0xD7
|
||||
set_eeprom_save_fuse: FUSE_STRING = -U hfuse:w:$(HFUSE):m
|
||||
set_eeprom_save_fuse: fuses
|
||||
|
||||
## Clear the EESAVE fuse byte
|
||||
clear_eeprom_save_fuse: FUSE_STRING = -U hfuse:w:$(HFUSE):m
|
||||
clear_eeprom_save_fuse: fuses
|
46
README.md
46
README.md
|
@ -1,3 +1,47 @@
|
|||
# AVR_ENCODER
|
||||
|
||||
This is small library for rotary encoders often found being used for controls or volume knobs in embedded platforms.
|
||||
This is small library for rotary encoders often found being used for controls
|
||||
or volume knobs in embedded platforms.
|
||||
|
||||
|
||||
The recomended way to use the code is by calling the poll_encoder() function
|
||||
in the C file.
|
||||
|
||||
This allows the use of polling for monitoring the state of the encoder. This
|
||||
should be fine for most applications that don't require interrupts for encoder
|
||||
use.
|
||||
|
||||
The only issue would be if running the AVR at very very low speed and
|
||||
preforming too many other taskts to the point that the polling loop doesn't
|
||||
capture the full wave form from the encoder. But this is a well known weakness
|
||||
in polling.
|
||||
|
||||
|
||||
## Demo Funciton:
|
||||
```C
|
||||
//This is just an example function of how you could use it.
|
||||
int demo() {
|
||||
init_encoder();
|
||||
uint8_t volume = 0;
|
||||
led_blink(2);
|
||||
|
||||
while(1) {
|
||||
switch(poll_encoder()) {
|
||||
case CW:
|
||||
if(volume < 100){volume++;}
|
||||
led_blink(1);
|
||||
break;
|
||||
case CCW:
|
||||
if(volume > 0){volume--;}
|
||||
led_blink(2);
|
||||
break;
|
||||
default:
|
||||
;//nothing.
|
||||
}
|
||||
|
||||
//Do other polling operations here
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
|
|
|
@ -0,0 +1,177 @@
|
|||
/*
|
||||
* Author: Jake Goodwin
|
||||
* Date: 2023
|
||||
* Description: Small library for using standard rotary encoders.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Rotary pin state bits
|
||||
* | NOUSE |A0 |B0 |A1 |B1 |
|
||||
* | 0000b | 0 | 0 | 0 | 0 |
|
||||
*/
|
||||
|
||||
/* Rotary encoder mechanical contacts.
|
||||
* Clockwise sequence:
|
||||
* | A B | DEC
|
||||
* t1 | 0 1 | 0x1
|
||||
* t2 | 0 0 | 0x0
|
||||
* t3 | 1 0 | 0x2
|
||||
* t4 | 1 1 | 0x3
|
||||
*
|
||||
* Counter-Clockwise sequence:
|
||||
* | A B | Hex
|
||||
* t1 | 1 0 | 0x2
|
||||
* t2 | 0 0 | 0x0
|
||||
* t3 | 0 1 | 0x1
|
||||
* t4 | 1 1 | 0x3
|
||||
*
|
||||
* If tossed into a 8bit register or var:
|
||||
* CW: 0b01001011 = 75
|
||||
* CCW: 0b10000111 = 135
|
||||
*/
|
||||
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <stdint.h>
|
||||
#include <util/delay.h>
|
||||
|
||||
// PIN DEFINITIONS
|
||||
//PUT YOUR PINS IN FOR ENCODER A/B
|
||||
//Along with pin offset if needed. So i'm using pins 1,2 so because I
|
||||
//skipped 0 I set the offset too 1.
|
||||
|
||||
#define ENCODER_A PINC1
|
||||
#define ENCODER_B PINC2
|
||||
#define PIN_OFFSET 1
|
||||
#define ENCODER_DDR DDRC
|
||||
#define ENCODER_PORT PORTC
|
||||
|
||||
#define INPUT_REG PINC
|
||||
|
||||
#define LED_PIN PINC0
|
||||
|
||||
//#############################
|
||||
//Globals
|
||||
//#############################
|
||||
|
||||
//if you want you can replace this with just encoder_byte
|
||||
//and bitshift/mask to compare it with the pins state, but it's less readable.
|
||||
uint8_t old_state = 0x0;
|
||||
uint8_t encoder_byte = 0x0;
|
||||
|
||||
//A more friendly way to check state.
|
||||
enum encoder_dir {
|
||||
CW = 1,
|
||||
CCW = 2,
|
||||
none = 0,
|
||||
};
|
||||
|
||||
|
||||
//#############################
|
||||
//FUNCTIONS
|
||||
//#############################
|
||||
/*
|
||||
* Input: None
|
||||
* Output: None
|
||||
* Description: Toggles the pin for the LED indicator.
|
||||
*/
|
||||
void led_blink(uint8_t x) {
|
||||
//Set the DDR for output.
|
||||
DDRC |= (1<<LED_PIN);
|
||||
|
||||
for(uint8_t i = 0; i < x; i++) {
|
||||
PORTC ^= (1<<LED_PIN);
|
||||
_delay_ms(500);
|
||||
PORTC ^= (1<<LED_PIN);
|
||||
_delay_ms(500);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void init_encoder(void) {
|
||||
|
||||
//Then encoder has two outputs, A, B also labeled as clk, dt.
|
||||
//Set the two pins too monitor digital inputs
|
||||
ENCODER_DDR &= ~( (1<<ENCODER_A)|(1<<ENCODER_B) );
|
||||
ENCODER_PORT &= ~( (1<<ENCODER_A)|(1<<ENCODER_B) );
|
||||
}
|
||||
|
||||
/*
|
||||
* Input: None,
|
||||
* Output: rotary_state: 0=No change, 1= Clockwise tick, 2= counter clockwise tick.
|
||||
* Description: checks the rotary encoder for changes in it's state. It updates
|
||||
* the global encoder byte by taking the state of A and B pins from the encoder
|
||||
* and shifting their state bits into it 2bits per shift. After four shifts
|
||||
* the value in the byte should equal 75 or 135 which would mean the encoder
|
||||
* completed a single step or tick.
|
||||
*/
|
||||
uint8_t poll_encoder() {
|
||||
//in this scope we have defined the state this way
|
||||
enum state {
|
||||
CW = 75,
|
||||
CCW = 135,
|
||||
};
|
||||
|
||||
//clear out old state bits.
|
||||
uint8_t encoder_state = 0x0;
|
||||
|
||||
//mask out the other pins, and deal with the pin offset.
|
||||
encoder_state |= ( (INPUT_REG & ((1<<ENCODER_A)|(1<<ENCODER_B)) )>> PIN_OFFSET);
|
||||
|
||||
//we want to check for the correct sequence of bits.
|
||||
//we also only want to accept new states as input. Not old states.
|
||||
if(encoder_state != old_state){
|
||||
old_state = encoder_state;
|
||||
encoder_byte = (encoder_byte<<2);
|
||||
encoder_byte |= encoder_state;
|
||||
}
|
||||
|
||||
switch(encoder_byte) {
|
||||
case CCW:
|
||||
encoder_byte = 0x0;
|
||||
encoder_state= 2;
|
||||
break;
|
||||
case CW:
|
||||
encoder_byte = 0x0;
|
||||
encoder_state= 1;
|
||||
break;
|
||||
default:
|
||||
encoder_state= 0x0;
|
||||
break;
|
||||
}
|
||||
|
||||
return encoder_state;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//This is just an example function of how you could use it.
|
||||
int demo() {
|
||||
init_encoder();
|
||||
uint8_t volume = 0;
|
||||
led_blink(2);
|
||||
|
||||
while(1) {
|
||||
switch(poll_encoder()) {
|
||||
case CW:
|
||||
if(volume < 100){volume++;}
|
||||
led_blink(1);
|
||||
break;
|
||||
case CCW:
|
||||
if(volume > 0){volume--;}
|
||||
led_blink(2);
|
||||
break;
|
||||
default:
|
||||
;//nothing.
|
||||
}
|
||||
|
||||
//Do other polling operations here
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue