gf_002/main.c

395 lines
8.8 KiB
C

/*
* FileName: *.c
* Date: 2024
* Descripton: Program for Atiny13A controllers, controls DPDT relays and
* has options to save settings in EEPROM.
*/
//#define __AVR_ATtiny13A__
#ifndef MCU
#define MCU atiny13a
#endif
#ifndef F_CPU
#define F_CPU 9600000UL
#endif
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
//These are just defined in case for compatability with Arduino
#ifndef HIGH
#define HIGH 1
#endif
#ifndef LOW
#define LOW 0
#endif
#ifndef UINT8_MAX
#define UINT8_MAX 256
#endif
//This is the bitpattern that should be at address 0x00
#define START_PATTERN 0xAA
#define END_PATTERN 0x55
//Addresses in the eeprom for the two bypasses
#define ROM_SP_ADR 0x0
#define ROM_BP1_ADR 0x1
#define ROM_BP2_ADR 0x2
#define ROM_EP_ADR 0x3
//Debounce check number.
#define MAX_CHECKS 5
#define PIN_SW2 PINB3
#define PIN_BYPASS2 PB4
#define PIN_SW1 PINB2
#define PIN_BYPASS1 PB1
#define PIN_MUTE PB0
//The BLINK_QTY can be edited from 0-255 blinks
#define BLINK_QTY 2
#define BLINK_CNT 2 * BLINK_QTY
#define BLINK_DELAY 20
/*Assuming default fuses are used then it's approximatly 33.4375ms per tick.
*
* This is important because the ATiny13/A only have a single timer built into
* them.
*
* Ticks are used as our way of keep track of long button presses.
* */
#define LONG_PRESS_TICKS 32 /*Approximatly 510ms*/
/*A structure to hold the button info*/
typedef struct {
uint8_t is_pressed: 1;
uint8_t is_bypassed: 1;
uint8_t is_long_pressed: 1;
uint8_t timer_enabled: 1;
uint8_t pressed_ticks;
uint8_t input_pin;
uint8_t output_pin;
}btn_state;
/*
* ###############################
* Global Variables
* ###############################
*/
/*Create two diffent instances of the button state structure*/
btn_state btn1;
btn_state btn2;
/*Some variables for managing the debouncing*/
volatile uint8_t debounced_state;
volatile uint8_t db_state[MAX_CHECKS];
volatile uint8_t idx;
/*
* ###############################
* FUNCTION PROTOTYPES
* ###############################
*/
static void toggle_output(btn_state *b);
static inline void init_btn(btn_state *b, uint8_t input_pin, uint8_t output_pin);
static void clear_button_timer(btn_state *b);
static inline void start_button_timer(btn_state *b);
static inline void check_button_longpress(btn_state *b);
static void update_button_output(btn_state *b);
static void update_button_input(btn_state *b);
static inline void blink_bypass1(void);
static inline void blink_bypass2(void);
static inline void init_timer0();
static inline void debounce_switch();
/*
* ###############################
* SETUP AND LOOP
* ###############################
*/
void init_prog()
{
/*Set the debounced state to all high*/
debounced_state = 0xFF;
/*Configures the PINS for the input and output.*/
init_btn(&btn1, PIN_SW1, PIN_BYPASS1);
init_btn(&btn2, PIN_SW2, PIN_BYPASS2);
/*Wait 5ms for pull-up resistors voltage to become stable.*/
_delay_ms(5);
/*check if the eeprom has info. */
while(! eeprom_is_ready()) {} //Blocks until eeprom is ready.
//Checks against a bit pattern we defined to represent the start of data.
if(eeprom_read_byte((uint8_t *)ROM_SP_ADR) == START_PATTERN) {
//Reads the two bytes representing the two states.
btn1.is_bypassed = eeprom_read_byte((uint8_t *)ROM_BP1_ADR);
btn2.is_bypassed = eeprom_read_byte((uint8_t *)ROM_BP2_ADR);
}
else {
//otherwise we write the init values for the start pattern and bypass states.
eeprom_write_byte((uint8_t *)ROM_SP_ADR, START_PATTERN);
eeprom_write_byte((uint8_t *)ROM_BP1_ADR, 0x0);
eeprom_write_byte((uint8_t *)ROM_BP2_ADR, 0x0);
}
btn1.is_pressed = ((PINB & (1<<btn1.input_pin)) == 0);
btn2.is_pressed = ((PINB & (1<<btn2.input_pin)) == 0);
/*This is to read if the user wants to change the saved states.*/
/*Manually read the current switch state*/
if(btn1.is_pressed){
btn1.is_bypassed = ! btn1.is_bypassed;
eeprom_write_byte((uint8_t *)ROM_BP1_ADR, btn1.is_bypassed);
blink_bypass1();
}
if(btn2.is_pressed){
btn2.is_bypassed = ! btn2.is_bypassed;
eeprom_write_byte((uint8_t *)ROM_BP2_ADR, btn2.is_bypassed);
blink_bypass2();
}
if(btn1.is_bypassed){PORTB |= (1<<btn1.output_pin);}
if(btn2.is_bypassed){PORTB |= (1<<btn2.output_pin);}
init_timer0();
}
int main()
{
init_prog();
while(1){
update_button_output(&btn1);
update_button_output(&btn2);
update_button_input(&btn1);
update_button_input(&btn2);
}
return 0;
}
/*
* ###############################
* FUNCTION DEFs
* ###############################
*/
//Made heavy use of static inline functions to improve readability.
static inline void blink_bypass1(void)
{
for(uint8_t i = 0; i < BLINK_CNT; i++) {
PORTB ^= (1<<PIN_BYPASS1);
_delay_ms(BLINK_DELAY);
}
}
static inline void blink_bypass2(void)
{
for(uint8_t i = 0; i < BLINK_CNT; i++) {
PORTB ^= (1<<PIN_BYPASS2);
_delay_ms(BLINK_DELAY);
}
}
/*
* ############################
* BUTTON methods
* ############################
*/
/*This is kinda like our button constructor*/
static void init_btn(btn_state *b, uint8_t input_pin, uint8_t output_pin)
{
b->is_long_pressed = 0;
b->is_pressed = 0;
b->is_bypassed = 0;
b->pressed_ticks = 0;
b->timer_enabled = 0;
b->input_pin = input_pin;
b->output_pin = output_pin;
/*Configure the buttons inputs and outputs*/
DDRB &= ~(1<<b->input_pin);
PORTB |= (1<<b->input_pin);
DDRB |= (1<<b->output_pin);
PORTB &= ~(1<<b->output_pin);
}
/*This is the fancy function to toggle output pins*/
static void toggle_output(btn_state *b)
{
if(!b->is_bypassed){
b->is_bypassed = 1;
PORTB |= (1<<b->output_pin);
}
else{
b->is_bypassed = 0;
PORTB &= ~(1<<b->output_pin);
}
}
static void clear_button_timer(btn_state *b)
{
b->timer_enabled = 0;
b->is_long_pressed = 0;
b->pressed_ticks = 0;
}
static void start_button_timer(btn_state *b)
{
clear_button_timer(b);
b->timer_enabled = 1;
}
static void check_button_longpress(btn_state *b)
{
if(b->pressed_ticks >= LONG_PRESS_TICKS) {
b->is_long_pressed = 1;
b->timer_enabled = 0;
}
}
static void update_button_input(btn_state *b)
{
/*Check from the global debounced port input*/
/*check for pin HIGH*/
if(debounced_state & (1<<b->input_pin)) {
b->is_pressed = 0;
}
/*otherwise assume pin LOW*/
else{
b->is_pressed = 1;
}
}
static void update_button_output(btn_state *b)
{
/*If the button is actually pressed.*/
if(b->is_pressed){
/*If this is a new event.*/
if(!b->is_long_pressed && !b->timer_enabled){
/*Then start the timer and update the output*/
toggle_output(b);
start_button_timer(b);
return;
}
/*If the timer is already going.*/
else if(b->timer_enabled){
/*Then just check if it's hit the threshold.*/
check_button_longpress(b);
return;
}
else{
return;
}
}
/*Else the button was realeased*/
else if(!b->is_pressed){
/*If the button was released on a long press.*/
if(b->is_long_pressed){
toggle_output(b);
}
clear_button_timer(b);
}
}
/*
* ############################
* DEBOUNCING CODE
* ############################
*/
/*
* INPUT: The port to check.
* OUTPUT: None
* DESCRIPTION: Updates the global debounced state. This function
* should be called in a ISR a set rate using the hardware timer.
*/
static inline void debounce_switch() {
uint8_t i, j;
db_state[idx] = PINB & 0xFF;
idx+=1;
j = 0xff;
/*Loop through a number of checks*/
for(i = 0; i < MAX_CHECKS; i++) {
j = j & db_state[i];
}
debounced_state = j;
if(idx >= MAX_CHECKS) {
idx = 0;
}
}
/*Setup the timer0 on the AVR*/
static inline void init_timer0() {
/*config to normal mode.*/
TCCR0A = 0x00; //stop timer
TCCR0B = 0x00; //zero timer
/*set prescaler*/
//Set to div64
TCCR0B |= (1<<CS01)|(1<<CS00);
/*Enable global interrupts*/
sei();
/*Enabling timer0 interrupt*/
TCNT0 = 0;
TIMSK0 |= (1<<TOIE0);
}
/*The interrupt service routine for the timer0*/
ISR(TIM0_OVF_vect, ISR_BLOCK)
{
cli();
/*Check the state of the switches*/
debounce_switch();
if(btn1.timer_enabled && btn1.pressed_ticks <= UINT8_MAX){
btn1.pressed_ticks += 1;
}
if(btn2.timer_enabled && btn2.pressed_ticks <= UINT8_MAX){
btn2.pressed_ticks += 1;
}
/*Re-Enable global interrupts*/
sei();
}