motorized_fader/src/main.c

357 lines
8.1 KiB
C

#ifndef F_CPU
#define F_CPU 1200000UL
#endif
#include "main.h"
//#include "ADC.h"
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <util/delay.h>
// These are only included during development for the LSP server.
// #include "iotn13.h"
// #include "iotn13a.h"
// #############################
// Globals
// #############################
/* This line isn't really quite right.*/
// uint8_t saved_position EEMEM; // EEPROM storage for fader position
btn_state btn1;
/*Some variables for managing the debouncing*/
volatile uint8_t debounced_state;
volatile uint8_t db_state[MAX_CHECKS];
volatile uint8_t idx;
volatile uint16_t tick_count;
// #############################
// Prototypes
// #############################
static inline void InitTimer0(void);
static void InitBtn(btn_state *b, uint8_t input_pin);
static void ClearButtonTimer(btn_state *b);
static void StartButtonTimer(btn_state *b);
static void CheckButtonLongpress(btn_state *b);
static void UpdateButtonInput(btn_state *b);
static void UpdateButtonOutput(btn_state *b);
// #############################
// MAIN
// #############################
int main() {
InitProg();
while (1) {
UpdateButtonOutput(&btn1);
UpdateButtonInput(&btn1);
}
return 0;
}
// #############################
// FUNCTIONS
// #############################
void InitProg(void) {
/*Set the debounced state to all high*/
debounced_state = 0xFF;
InitBtn(&btn1, BUTTON_PIN);
/*Wait 5ms for pull-up resistors voltage to become stable.*/
_delay_ms(5);
/*check if the eeprom has info. */
while (!eeprom_is_ready()) {
} // Blocks until eeprom is ready.
// Checks against a bit pattern we defined to represent the start of data.
if (eeprom_read_byte((uint8_t *)ROM_SP_ADR) == START_PATTERN) {
MotorMoveTo(eeprom_read_byte((uint8_t *)POSITION1_ADR));
} else {
// otherwise we write the init values for the start pattern and states.
eeprom_write_byte((uint8_t *)ROM_SP_ADR, START_PATTERN);
eeprom_write_byte((uint8_t *)POSITION1_ADR, 0x7F);
}
InitTimer0();
}
uint8_t ReadSpeed(void) {
// Initialize ADC
ADMUX = (0 << MUX1) | (1 << MUX0); // Select ADC1 (PB2)
ADCSRA = (1 << ADEN) | (1 << ADPS1) | (1 << ADPS0); // Enable ADC, prescaler 8
ADCSRA |= (1 << ADSC); // Start conversion
while (ADCSRA & (1 << ADSC)) {
} // Wait for conversion to finish
//Normally a bitshift of 2 is done for 8bit ADC values,
//however we want to divide by two after this as well so we
//do a third shift followed by an addition of 127 to yield a mapping of
//approximatly 50%-96.6% duty cycle range.
uint8_t val = (uint8_t)(ADC >> 3) + 127;
return val;
}
// change to ReadFader(void)
uint8_t ReadFader(void) {
// Initialize ADC
ADMUX = (1 << MUX1) | (1 << MUX0); // Select ADC3 (PB3)
ADCSRA = (1 << ADEN) | (1 << ADPS1) | (1 << ADPS0); // Enable ADC, prescaler 8
ADCSRA |= (1 << ADSC); // Start conversion
while (ADCSRA & (1 << ADSC)) {
} // Wait for conversion to finish
return (uint8_t)(ADC >> 2);
}
/*
* ############################
* Motor methods
* ############################
*/
static inline uint8_t diff(uint8_t a, uint8_t b) {
if (a > b) {
return a - b;
}
return b - a;
}
void MotorSetSavePos(uint8_t *ADR) {
uint8_t pos = ReadFader();
eeprom_write_byte((uint8_t *)ADR, pos);
return;
}
uint8_t MotorGetSavedPos(uint8_t *ADR) {
return (uint8_t)eeprom_read_byte((uint8_t *)ADR);
}
void MotorMoveTo(uint8_t target) {
uint8_t on_delay = ReadSpeed();
uint8_t pos = ReadFader();
uint8_t idx = 0;
while (diff(target, pos) > 4) {
on_delay = ReadSpeed();
pos = ReadFader();
if (target > pos) {
MotorMove(1);
} else {
MotorMove(0);
}
// The delay ratio controlls the PWM waveforms.
for (idx = 0; idx < on_delay; idx++) {
_delay_us(MOTOR_PULSE);
}
MotorCoast();
for (; idx < 255; idx++) {
_delay_us(MOTOR_PULSE);
}
}
return;
}
// Using the compatable bool type.
// The motor being used seems to stop working below a 50% duty cycle.
void MotorMove(uint8_t fwd) {
if (fwd) {
PORTB |= (1 << PWM_PIN1);
PORTB &= ~(1 << PWM_PIN2);
} else {
PORTB |= (1 << PWM_PIN2);
PORTB &= ~(1 << PWM_PIN1);
}
return;
}
void MotorCoast(void) {
PORTB &= ~((1 << PWM_PIN1) | (1 << PWM_PIN2)); // Disable motor drive
}
/*
* ############################
* BUTTON methods
* ############################
*/
/*This is kinda like our button constructor*/
static void InitBtn(btn_state *b, uint8_t input_pin) {
b->is_long_pressed = 0;
b->is_pressed = 0;
b->is_active = 0;
b->pressed_ticks = 0;
b->timer_enabled = 0;
b->input_pin = input_pin;
/*Configure the buttons inputs and outputs*/
DDRB &= ~(1 << b->input_pin);
PORTB |= (1 << b->input_pin);
}
static void ClearButtonTimer(btn_state *b) {
b->timer_enabled = 0;
b->is_long_pressed = 0;
b->pressed_ticks = 0;
}
static void StartButtonTimer(btn_state *b) {
ClearButtonTimer(b);
b->timer_enabled = 1;
}
static void CheckButtonLongpress(btn_state *b) {
if (b->pressed_ticks >= LONG_PRESS_TICKS) {
b->is_long_pressed = 1;
b->timer_enabled = 0;
}
}
static void UpdateButtonInput(btn_state *b) {
/*Check from the global debounced port input*/
/*check for pin HIGH*/
if (debounced_state & (1 << b->input_pin)) {
b->is_pressed = 0;
}
/*otherwise assume pin LOW*/
else {
b->is_pressed = 1;
}
}
static void UpdateButtonOutput(btn_state *b) {
/*If the button is actually pressed.*/
if (b->is_pressed) {
b->is_active = 1;
/*If this is a new event.*/
if (!b->is_long_pressed && !b->timer_enabled) {
/*Then start the timer and update the output*/
// ToggleOutput(b);
StartButtonTimer(b);
return;
}
/*If the timer is already going.*/
else if (b->timer_enabled) {
/*Then just check if it's hit the threshold.*/
CheckButtonLongpress(b);
return;
}
else {
return;
}
}
/*Else the button was realeased*/
else if (!b->is_pressed) {
/*If the button was released on a long press.*/
if (b->is_long_pressed) {
MotorSetSavePos((uint8_t *)POSITION1_ADR);
}
/*If the button pres was a short one.*/
else if (!b->is_long_pressed) {
if (b->is_active) {
/*If already in saved position then go back to original pos.*/
if(diff(MotorGetSavedPos((uint8_t *)POSITION1_ADR), ReadFader()) < 4){
MotorMoveTo(MotorGetSavedPos((uint8_t *)POSITION2_ADR));
}
else{
/*Save the current position into position 2 EEPROM*/
MotorSetSavePos((uint8_t *)POSITION2_ADR);
MotorMoveTo(MotorGetSavedPos((uint8_t *)POSITION1_ADR));
}
} else {
MotorCoast();
}
}
b->is_active = 0;
ClearButtonTimer(b);
}
}
/*
* ############################
* DEBOUNCING CODE
* ############################
*/
/*
* INPUT: The port to check.
* OUTPUT: None
* DESCRIPTION: Updates the global debounced state. This function
* should be called in a ISR a set rate using the hardware timer.
*/
static inline void DebounceSwitch() {
uint8_t i, j;
db_state[idx] = PINB & 0xFF;
idx += 1;
j = 0xff;
/*Loop through a number of checks*/
for (i = 0; i < MAX_CHECKS; i++) {
j = j & db_state[i];
}
debounced_state = j;
if (idx >= MAX_CHECKS) {
idx = 0;
}
}
/*Setup the timer0 on the AVR*/
static inline void InitTimer0(void) {
/*Zero out the tick_count var*/
tick_count = 0;
/*config to normal mode.*/
TCCR0A = 0x00; // stop timer
TCCR0B = 0x00; // zero timer
/*set prescaler*/
// Set to div64
TCCR0B |= (1 << CS01) | (1 << CS00);
/*Enable global interrupts*/
sei();
/*Enabling timer0 interrupt*/
TCNT0 = 0;
TIMSK0 |= (1 << TOIE0);
}
// ISR(TIMER0_OVF_vect)
/*The interrupt service routine for the timer0*/
ISR(TIM0_OVF_vect) {
/*Disable global interrupts*/
cli();
/*Check the state of the switches*/
DebounceSwitch();
/*Update the tick_count*/
if (btn1.timer_enabled && btn1.pressed_ticks <= UINT8_MAX) {
btn1.pressed_ticks += 1;
}
/*Re-Enable global interrupts*/
sei();
}